
MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 1 of 74

redcoal Mobile Internet Developer API (MIDA) for
SOAP-XML Web Services

Version 7.11
September 2005

Technical Support: support@redcoal.com
Or visit http://www.redcoal.com/

All Documents prepared or furnished by redcoal Pty Ltd remains the property of redcoal Pty Ltd.
The document shall not be copied or reproduced without redcoal’s prior consent.

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 2 of 74

Table of Contents

1. Introduction.. 4

1.1 Short Message Service (SMS) _____________________________________ 4

1.2 Multimedia Messaging Service (MMS) _______________________________ 5

1.3 WAP Push (Service Indication) _____________________________________ 5

1.4 Simple Object Access Protocol (SOAP) ______________________________ 6

1.5 redcoal Gateways ___ 6

1.6 Security ___ 7

2. Getting Started... 8

2.1 SMS Key and Serial Number_______________________________________ 8

2.2 License__ 8

2.3 Error Codes __ 9

2.4 Notification ___ 9

2.5 Message ID __ 9

2.6 Web Services Access ___ 10

2.7 Base64 Byte Stream __ 11

2.8 Format of MIDA Specifications ____________________________________ 12

3. Sending Text and Binary SMS Messages 13

3.1 SendTextSMS ___ 13

3.2 SendBinarySMS__ 16

3.3 SendBinarySMSByContent _______________________________________ 20

3.4 SendSMS2__ 22

4. Sending MMS and WAP Push Messages 26

4.1 CreateMMS ___ 26

4.2 AddMMSContent ___ 28

4.3 AddBase64MMSContent ___ 32

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 3 of 74

4.4 SendMMS __ 34

4.5 SendWAPSI___ 37

5. Scheduled Messaging ... 39

5.1 EnterSchedule ___ 39

5.2 EnterScheduleExt __ 42

5.3 DeleteSchedule __ 44

6. Receiving Incoming Messages ... 46

6.1 GetIncomingMessage ___ 46

7. Groups Management ... 49

7.1 CreateGroup __ 49

7.2 GetListNames ___ 52

7.3 GetListEntries ___ 54

8. Miscellaneous Methods... 56

8.1 CheckMessageStatus ___ 56

8.2 GetCreditsLeft ___ 59

8.3 GetLicenseInformation___ 60

8.4 RedWebServiceVersion__ 61

Appendix A: Error Codes... 62

Appendix B: Binary SM Content Types .. 65

Appendix C: Binary SM Source Types.. 68

Appendix D: Country and Network Operator Codes............................ 70

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 4 of 74

1. Introduction

This document provides instructions on how application developers and web designers
can access redcoal’s mobile services and integrate them into their own solutions. These
mobile services exploit redcoal’s latest SMS/MMS technologies, and are provided as
SOAP compliant XML web services.

The basic services provided include sending text SMS Messages, binary SMS messages
such as ring tones, logos, picture messages, and many housekeeping services. Newer
services such as sending EMS messages, MMS messages and WAP Push are provided
from MIDA version 7.0 onwards.

Access to these services is via redcoal Mobile Internet Developer API (MIDA). The
specifications of the APIs are broken down into logical operations, e.g. APIs for sending
text SMS messages, binary SMS messages, MMS messages, and miscellaneous
services, etc. starting from Chapter 3 of this document. Chapter 2 provides a quick start
guide and general procedures for accessing MIDA. In the rest of this chapter, brief
descriptions are given to explain the underlying technologies used by redcoal.

1.1 Short Message Service (SMS)
Short Message Service (SMS) is now a familiar service for sending Short Messages
(SM). It is originally specified for use in the GSM networks. When sending SM, they are
first dispatched to the Short Message Service Centre (SMSC) and later forwarded to the
destination. The specifications of SMS involve a number of documents and can be found
at http://www.etsi.org/ (this site also provides all the documents on GSM in general).

SMS provides a number of encoding of SM. redcoal supports both 7-bit (the usual
encoding of SM) and 8-bit SMS technologies. The 8-bit SM are usually used to encode
the so-called binary SM. Binary SM include all the ring tones, logos, picture messages,
etc. and also serve as vehicle for sending MMS and WAP Push messages. Most of the
common Nokia’s proprietary ring tones, logos and picture messages are supported.

In addition, the following 2 kinds of messages are also supported:

 Enhanced Messaging Service (EMS) messages. EMS is a standard developed by
Third Generation Partnership Project (3GPP) to embrace and extend the ability to
send ring tones, logos and other simple visual messages. For example, most
Ericsson ring tones are provided in EMS format. Consequently, these ring tones for
most of the modern Ericsson handsets are supported. Details of EMS can be found
at http://www.mobileems.com/.

Motorola’s proprietary ring tones. These ring tones are actually plain text
messages, but composed in Motorola’s proprietary format such that the modern
Motorola handsets can recognize them.

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 5 of 74

EMS messages are sent as binary SM and Motorola ring tones are simply sent as plain
text SM by redcoal. Developers wishing to send EMS messages and Motorola’s
proprietary ring tones, however, must provide these contents already encoded in the
correct format. Note that the ability to display these messages depends on the capability
of the destined handsets.

redcoal provides two-way messaging where the recipient can reply to the first message
and the reply message will be delivered to the originator’s email address. redcoal hosts a
large pool of mobile numbers (MSISDN) that serve as the intermediary stops for sending
out original messages and receiving reply messages. A sophisticated path resolution
algorithm is used to determine which MSISDN to use as the intermediary stop such that
individual reply message will be delivered to their correct destination.

1.2 Multimedia Messaging Service (MMS)
Multimedia Messaging Service (MMS) is the latest technology to send Multimedia
Messages (MM). A MM is actually a MIME document with multi-parts, e.g. it can contain
plain text, pictures and sound clips, all in one message. When sending MM, same as the
SM case, they are first dispatched to and stored at the Multimedia Messaging Service
Center (MMSC) and later retrieved by the destination. However, the protocol between
them is much more complicated. Details and specification of MMS can be found at
http://www.openmobilealliance.org/.

Briefly, when the MMSC receives the MM from the originator and stores it, it sends a
notification to the destination first to notify it that there is a MM waiting for retrieval. If the
destined handset is set to retrieve the MM (it may be setup in such a way that it ignores
such notification), then it retrieves the MM from the MMSC.

The default presentation language for MM is Synchronized Multimedia Integration
Language (SMIL). SMIL is a mark-up language, like HTML, for specifying how and when
certain multipart contents should be displayed. The original SMIL is a rather large class of
language. The latest version is 2.0, which can be downloaded at
http://www.w3.org/TR/smil20/. However the early versions of SMIL MMS only support a
limited subset of the original SMIL 2.0 language and a limited set of multimedia contents
such as static images, voice and sound clips, etc. These are detailed in the MMS
conformance specifications at http://www.openmobilealliance.org/ and the 3GPP SMIL
document at http://www.3gpp.org/ftp/Specs/archive/26_series/26.234/.

1.3 WAP Push (Service Indication)
redcoal also supports sending WAP Service Indication (SI) messages. These are also
called WAP Push messages because they are “pushed” to the destination. SI mainly
contains WAP or Web address sent to the destined handset and stored there. Later the
user can visit these sites via the WAP browser (and GPRS) of the handset. Details and
specification of Wireless Application Protocol (WAP) and WAP Push technologies can be

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 6 of 74

found at http://www.openmobilealliance.org/.

Note again that the ability to receive and display MM and WAP SI messages depends on
the capability of the destined handsets.

1.4 Simple Object Access Protocol (SOAP)
Direct requests to and replies from the various methods provided by MIDA conform to
formats specified by the Simple Object Access Protocol (SOAP). SOAP is a lightweight
and simple XML-based protocol that is designed to exchange structured and typed
information on the Web. The actual specifications of all the methods (their signatures) are
contained in the Web Service Definition Language (WSDL) that redcoal provide. An
introduction to SOAP and WSDL can be found at http://ww.w3.org/TR/SOAP/ and
http://www.w3.org/TR/wsdl/ respectively. Details about XML can be found at
http://www.w3.org/XML/.

Many software development environments provide tools for easily accessing SOAP web
services, e.g. Microsoft .NET. Examples in VB.NET will be provided in subsequent
chapters to explain and illustrate the various methods and general routines.

In previous versions of MIDA, each SOAP method has a corresponding implementation in
Microsoft COM based component for easy access to SOAP web services. From MIDA
version 7.0 onwards, continual support for COM will cease to be provided and all
accesses to mobile services are meant to be via direct SOAP web services. Hence the
latest COM based component supported is version 6.0. Although it will still be valid in
older developments for backward compatibility, developers are strongly encouraged to
access SOAP web services directly. However, application developers are free to write
their own latest COM based components for accessing redcoal’s newer SOAP web
services.

1.5 redcoal Gateways
Behind the scene, the SOAP web services are provided at the redcoal Mobile Internet
Gateway (MIG). The gateway dispatches SM via reliable links to a number of Short
Message Service Centre (SMSC) using Short Message Peer to Peer Protocol (SMPP).
Hence the gateway has the sufficient bandwidth and capacity to process large volume
(millions) of SM. For the interesting developers, details and specifications of SMPP can
be found at http://www.smpp.org/.

MIG connects to several different manufacturers’ SMSC on one side and provides a
uniform interface to communicate with applications on the other. Hence it makes it
possible and easy for applications to access the various SMSC by using only one
interface.

redcoal reaches more than 130 countries and 300 networks all over the world. An up-to-
date list of supported countries and networks can be found at http://www.redcoal.com/.

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 7 of 74

For MMS, developers can provide a number of parts of the MM to the MIG and on the
gateway side these parts will be assembled into a single MM. The MM itself will be stored
at the redcoal MMS Gateway (MMSG) and a MMS notification message will then be sent
to the destination, whereby it will retrieve the actual MM from the MMSG. Hence the
MMSG acts as the MMSC.

1.6 Security
At the moment, transmissions between redcoal SOAP web services and user applications
over the web and over-the-air (wireless transmissions) are not encrypted, i.e. information
is still transmitted as clear text. MIDA only provides basic authentication via user account
passwords and serial numbers. However, MIDA will include an alternative version of
secure web services using secure HTTP (HTTPS) or SSL, in addition to the basic
authentication in the near future. Over-the-air security will not be considered.

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 8 of 74

2. Getting Started

This chapter provides a quick start guide to accessing redcoal SOAP web services and
explains some of the features of MIDA. Example VB.NET codes for accessing web
services and other general routines will also be provided to help developers get started
more easily. A brief quick start steps are:

1. Obtain a password (SMSKey) from redcoal;
2. Generate a serial number;
3. Import the redcoal SOAP web services reference in your development project;
4. Invoke the MIDA methods in your program to access redcoal SOAP web services.

The above steps are explained in more details and illustrated with examples in the
following sections.

2.1 SMS Key and Serial Number
All MIDA methods require a serial number and a password (the SMS key) for basic
authentication. They are provided as the first two input parameters of all methods
respectively:

 strInSerialNo– the serial number, and
 strInSMSKey– the SMS key

To obtain the SMS key, you need to register an account with redcoal. If you have not
done so, go to http://www.redcoal.com/ and register your details under the ‘Login’ section,
after which you will be sent via email a SMS key. There are also a number of account
settings that affect how the web services behave. For description of these settings, login
and check out the ‘Services’ page.

To obtain the serial number, you need to download the MIDA package. If you have not
done so, go to http://www.redcoal.com/ and download it under the ‘Developers’ section.
Run the serial number generation program ‘SerialGen.exe’ included in the package to
generate a serial number for you. The serial number will be stored in the file ‘serialno.txt’
in your working directory.

2.2 License
The first time redcoal SOAP web services are accessed, a temporary license will be
issued to the user. This license permits the user to access redcoal web services for a free
trial period, which is normally 30 days. After this trial period, a one-time license fee will be
charged for continuous access of the web services. Alternative agreement between the
user and redcoal is possible to waive this license fee. Check out the latest details at
http://www.redcoal.com/.

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 9 of 74

2.3 Error Codes
All method calls return an integer error code (except RedWebServiceVersion in Section
8.4). If the call is successful, the error code is 0. Otherwise some positive integer error
code will be returned to reflect the failure reason. A complete list of all error codes and
their meanings is given in Appendix A.

2.4 Notification
In each of the MIDA ‘Send…’ methods explained in the following chapters, a parameter
that contains the reply email of the user is mandatory to access that method. This reply
email is used for receiving any notification during the processing and dispatch of the
requested mobile message. When all the preliminary checks of the user details and
parameters of the method call pass, the message will be stored at redcoal gateway,
waiting to be dispatched to the SMSC. In the following situations, a notification will be
sent to the user reply email:

1. If errors occur during the processing of the stored message at the gateway or
dispatch of the message to the SMSC, a notification will be sent with the failure
reason.

2. If the message fails to get deposited at the SMSC, it will be stored for later retry.
But after a number of continuous failures, redcoal gateway will give up and abort
and an abort notification will be sent.

3. If receipts are available from a specific SMSC and a successful receipt is received
for the message (which means the message has been delivered to the destination
successfully), then a confirmation notification is sent (if such option is enabled in
the account setting).

4. If an unsuccessful receipt is received, then redcoal gateway will retry until abort
when an abort notification will be sent, or success when a confirmation is sent (if
such option is enabled in the account setting).

2.5 Message ID
In each of the MIDA ‘Send…’ methods explained in the following chapters, the message
successfully deposited at the redcoal server would be given a message ID returned back
for future reference. The format of the message ID returned is

Destination:MessageID

If the same message is sent to more than one destination in the recipient list, then each
message sent to each destination in the list has its own unique ID and a list of the
message IDs will be returned, with the format

Destination_1:MessageID_1,...,Destination_n:MessageID_n

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 10 of 74

in the same order of the recipients specified in the recipient list.

If messages sent to some destinations in the recipient list cannot be deposited for some
reason, e.g. the destination is invalid, while other messages sent to other destinations in
the list are successfully deposited, then only the successfully deposited message IDs will
be returned, with those failed represented as blank. For example, suppose the same
message is sent to 3 destinations below:

+61041234567,+1234,+61042345678

The messages sent to the first and third are successfully deposited, but the one sent to
the second fails because the destination is invalid. Then the list of message IDs returned
will be:

+61041234567:123456,,+61042345678:123457

in the same order of the recipients in the recipient list, with the second blank.

2.6 Web Services Access
The specifications of all MIDA methods are contained in WSDL that redcoal provide.
These specifications specify the signatures, types and formats of input and output
parameters, as well as any return values of the methods, and are needed to correctly
access the web services.

The WSDL of the MIDA methods is located at:
http://xml.redcoal.com/soapserver.dll/wsdl/ISoapServer

Some third party SOAP testing web site can be used to test these methods. One of them
is the following:

http://www.soapclient.com/soaptest.html

To access redcoal SOAP web services in your development project, you need to provide
the WSDL reference, listed above. In the following, a general procedure for referencing
redcoal web services is provided for VB.NET project:

1. Open your Visual Studio .NET, create a new ‘Visual Basic’ project using the
‘Windows Application’ template, name it and click ‘OK’.

2. Now add the web reference to the redcoal web service. A web reference creates
the proxy class needed to communicate with the web service. From the Project
menu click ‘Add Web References’. The Add Web Reference dialog box opens.
Enter the address of the WSDL listed above in the address bar, then press ‘Enter’.
The redcoal web service gets loaded and its information is shown in the dialog box.
Moreover the ‘Add Reference’ button will be enabled.

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 11 of 74

3. Click the ‘Add Reference’ button to add this web reference to your project. (If you
don’t have Visual Studio .NET you will have to use command line program
‘wsdl.exe’ to generate the proxy class.)

4. Now in the ‘Solution Explorer’, expand the ‘Web References’ folder to note the
namespace (com.redcoal.xml) for the redcoal Web reference classes. This name
can be changed to any other name, e.g. simply ‘Redcoal’.

After adding the web reference classes, a web service instance can be created to access
the various methods. Multiple instances can be created and they can be global or local
instances. In VB.NET, creating web service instance is as simple as the following
(supposing the namespace in step 4 above is renamed as ‘Redcoal’):

Dim ws As Redcoal.ISOAPServerservice =
New Redcoal.ISOAPServerservice()

Then the web service instance ‘ws’ can be used to access the various methods as follow,
where in the code, ‘method’ is any MIDA method name with n parameters and the return
value is stored in ‘Result’:

Dim Result As Integer
'---prepare parameters param_1,...,param_n
Result = ws.method(param_1,...,param_n)
'---check the error code in “Result”

2.7 Base64 Byte Stream
Many methods accept file content as one of the parameters, to be included as part of the
content of the SM or MM to be delivered to the destination, e.g. the method
SendBinarySMS expects a parameter that contains the content of, say, a logo or ring
tone. These contents are encoded using base64 and transmitted as a byte stream via the
web. The following example VB.NET code is provided as a template for converting some
file content (the path name of which is ‘FilePath’) to a byte array, passed as a parameter
of the method SendBinarySMS.

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 12 of 74

Imports System.IO
.
.
Dim s1 As FileStream
Dim br As BinaryReader
s1 = New FileStream(FilePath.Text, FileMode.Open,
 FileAccess.Read)
br = New BinaryReader(s1)
Dim a As Integer = br.BaseStream.Length()
Dim byteRead(a) As Byte
Dim j As Integer
For j = 0 To br.BaseStream.Length() - 1
byteRead(j) = br.ReadByte
Next
br.Close()
.
.
Dim Result As Integer
Result = ws.SendBinarySMS(..., byteRead, ...)
.
.

2.8 Format of MIDA Specifications
The following chapters break down all the supported MIDA methods into their logical
operations, and describe their functionalities and properties. All methods take as their first
2 parameters the serial number and SMS key respectively, and return an error code
(except RedWebServiceVersion in Section 8.4), as explained in Section 2.1 and 2.3.
The general form of the description of the methods is:

 Synopsis – the form of the method call similar to C++ language
 Description – the use and description of the function of the method
 Parameters – type and description of the input/output parameters. The list of

parameters is in table format with columns:
o Parameter name
o Parameter type
o Input and/or output parameter
o Description

 Related material and special notes (optional)
 Example VB.NET code

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 13 of 74

3. Sending Text and Binary SMS Messages

3.1 SendTextSMS

Synopsis

int SendTextSMS(string strInSerialNo,
 string strInSMSKey,
 string strInRecipients,
 string strInMessageText,
 string strInReplyEmail,
 string strInOriginator,
 int iInType,
 string &strOutMessageIDs)

Description

This is by far the most common method that sends a text SMS message (the content of
which is specified in the parameter strInMessageText) to the (possibly multiple) mobile
destinations as specified in the parameter strInRecipients.

The SM can be a simple one-way message, a two-way message, or a flash message as
specified in the parameter iInType.

For one-way message, the text message can only be forwarded to the destination. The
recipients cannot reply back to the originator. In two-way SMS messaging, recipients can
reply and the reply message is forwarded back to the originator via email as specified in
the parameter strInReplyEmail, or alternatively retrieved by the originator via the method
GetIncomingMessage (see Chapter 6). Flash messages are those that are displayed on
the screen of the recipients’ mobile phone without being stored in the handset’s inbox.

The message that arrives at the recipient handset will show the name of the originator
specified in the parameter strInOriginator. However, the originator may not always be
shown at the handset, particularly if the originator contains non-numeric alphabets
because some networks/SMSC do not allow alphabets to be displayed as the sender. In
such case, the networks/SMSC will substitute the originator with one of their own
numbers as the sender, or worse, just reject the message. Moreover, if the message is
two-way, the parameter strInOriginator will be ignored because the sender will be one of
redcoal’s numbers for receiving the replies.

Each message deposited for each destination in strInRecipients will be assigned a
unique message identifier, returned via the output parameter strOutMessageIDs. Call
the method CheckMessageStatus (see Section 8.1) to check the status of the message
for a particular destination (delivered, processed etc.).

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 14 of 74

A notification will be sent to the sender via email specified in the parameter
strInReplyEmail when one of the situations outlined in section 2.4 occurs.

Parameters

Parameters Type In/Out Description
strInSerialNo String In User serial number
strInSMSKey String In User password (SMSKey)
strInRecipients String In Comma separated list of

recipients’ mobile numbers,
preferably in international format,
e.g. +4179123123,+6140123123

strInMessageText String In Message content, maximum 160
characters. Messages longer than
160 characters will be cut off.

strInReplyEmail String In Error notifications and message
delivery confirmations (if enabled)
will be sent to this address, as well
as replies to the message if two-
way message is sent.

strInOriginator String In The sender displayed at the
destination handset. Both numbers
and alphanumeric strings are
allowed. If the message is two-
way, this parameter will be
ignored.

iInType Integer In This parameter specifies the type
of message to be sent:

 0 = one-way SM
 1 = two-way SM
 2 = flash SM

strOutMessageIDs String Out Comma separated list of message
identifiers, each corresponds to the
message sent to a destination in
the same order specified in
strInRecipients, e.g.
+4179123123:123456,
+6140123123:123457

See also

CheckMessageStatus, GetIncomingMessage, SendSMS2

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 15 of 74

Example

.

.
Dim strInSerialNo As String = "my serial number"
Dim strInSMSKey As String = "my SMS key"
Dim strInRecipients As String =
 "+4179123123,+6140123123"
Dim strInMessageText As String = "A text message"
Dim strInReplyEmail As String = "myemail@mycom.com"
Dim strInOriginator As String = "originator"
Dim iInType As Integer = 0 '---one way message
Dim strOutMessageIDs As String
.
.
Dim Result As Integer
Result = ws.SendTextSMS(strInSerialNo,
 strInSMSKey,
 strInRecipients,
 strInMessageText,
 strInReplyEmail,
 strInOriginator,
 iInType,
 strOutMessageIDs)
.
.

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 16 of 74

3.2 SendBinarySMS

Synopsis

int SendBinarySMS(string strInSerialNo,
 string strInSMSKey,
 string strInRecipients,
 base64Binary strInBinaryContent,
 string strInExtraParam,
 string strInReplyEmail,
 int iInType,
 string &strOutMessageIDs)

Description

This method sends a binary SMS message (the content of which is specified in the
parameter strInBinaryContent, which is a Base64-encoded byte stream) to the (possibly
multiple) mobile destinations as specified in the parameter strInRecipients.

A binary SM can be one of the followings, as specified in the parameter iInType (a list of
the possible formats for these messages and their descriptions is given in Appendix B):

 Operator logo (bitmap)
 Mono ring tone (RTTTL format)
 Polyphonic ring tone (MIDI)
 Picture message (bitmap + text)
 VCard (text)
 WAP Bookmark (text)
 Java game (java archive .jar)

Operator logos, mono ring tones, picture messages, VCards and WAP bookmarks must
conform to the format specified in Nokia’s Smart Messaging Protocol. Consequently, only
Nokia’s handsets can interpret these binary messages. For handsets of other
manufacturers, the alternative method SendBinarySMSByContent (see Section 3.3)
should be used.

For sending polyphonic ring tones and java games, the actual ring tones or java games
are not sent. Instead, they are stored at the redcoal MMS gateway. A special kind of WAP
Push message called the Service Indication (SI) is used to send a URL of these ring
tones or java games to the destinations handsets (see SendWAPSI in Section 4.4). Then
the user can download these contents from the MMS gateway via WAP. For this reason,
the destination handsets must also support WAP. An additional text message that
contains the actual URL will also be sent to the destination handsets. User with handset
that does not support SI can enter the URL manually into the WAP browser of the
handset and retrieve the content.

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 17 of 74

The purpose of the parameter strInExtraParam depends on the content types of the
binary message:

 If the message is an operator logo, strInExtraParam contains the network with
which the destination handset is. The format should be “XXX YY” where XXX is the
MCC and YY is the MNC, separated by a white space. A list of supported MCC
and MNC is given in Appendix D.

 If the message is a picture message, strInExtraParam contains the text of the
message while strInBinaryContent contains the picture.

 If the message is a WAP bookmark, strInExtraParam contains the name of the
bookmark in plain text (used as a title for the bookmark) while strInBinaryContent
contains the actual URL of the bookmark in plain text.

 If the message is a polyphonic ring tone or a java game, strInExtraParam
contains the name of the content in plain text (used as a title for the content) while
strInBinaryContent contains the actual content (ring tone or java game).

 For all other types (mono ring tone and VCard), the parameter strInExtraParam is
ignored and can be empty.

This method can also be called to restore the original operator logo; the current one will
effectively be removed. If this is the case, both the parameters strInBinaryContent and
strInExtraParam are ignored and can be empty.

Binary messages are always one-way messages. The originator will be one of redcoal’s
numbers. Hence a parameter strInOriginator like that in SendTextSMS is absent in this
method. But a notification will still be sent to the sender via email specified in the
parameter strInReplyEmail when one of the situations outlined in section 2.4 occurs.

Each message deposited for each destination in strInRecipients will be assigned a
unique message identifier, returned via the output parameter strOutMessageIDs. Call
the method CheckMessageStatus (see Section 8.1) to check the status of the message
for a particular destination (delivered, processed etc.).

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 18 of 74

Parameters

Parameters Type In/Out Description
strInSerialNo String In User serial number
strInSMSKey String In User password (SMSKey)
strInRecipients String In Comma separated list of

recipients’ mobile numbers,
preferably in international format,
e.g. +4179123123,+6140123123

strInBinaryContent Base64 In A byte stream encoded with
base64 containing the actual
binary content. See section 2.6 for
how to convert a binary file to a
byte stream.

strInExtraParam String In This parameter contains extra
information of the binary message,
depending on the specific
message type as outlined above.

strInReplyEmail String In Error notifications and message
delivery confirmations (if enabled)
will be sent to this reply email
address.

iInType Integer In This parameter specifies the type
of message to be sent:

 5506 = operator logo
 5505 = mono ring tone
 5514 = picture message
 9204 = VCard
 9039 = WAP bookmark
 9601 = polyphonic ring tone
 2960 = java game
 255 = remove operator logo

strOutMessageIDs String Out Comma separated list of message
identifiers, each corresponds to
the message sent to a destination
in the same order specified in
strInRecipients, e.g.
+4179123123:123456,
+6140123123:123457

See also

CheckMessageStatus, SendBinarySMSByContent, SendWAPSI, SendSMS2

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 19 of 74

Example

.

.
Dim strInSerialNo As String = "my serial number"
Dim strInSMSKey As String = "my SMS key"
Dim strInRecipients As String =
 "+4179123123,+6140123123"

'---byteRead is a byte array of length (a)
'---that contains the actual content of the
'---operator logo, obtained as in section 2.6
Dim byteRead(a) As Byte

'---the network is Australia Telstra
Dim strInExtraParam As String = "505 01"

Dim strInReplyEmail As String = "myemail@mycom.com"
Dim iInType As Integer = 5506 '---operator logo
Dim strOutMessageIDs As String
.
.
Dim Result As Integer
Result = ws.SendBinarySMS(strInSerialNo,

 strInSMSKey,
 strInRecipients,
 byteRead,
 strInExtraParam,
 strInReplyEmail,
 iInType,

strOutMessageIDs)
.
.

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 20 of 74

3.3 SendBinarySMSByContent

Synopsis

int SendBinarySMSByContent(string strInSerialNo,
 string strInSMSKey,
 string strInRecipients,
 base64Binary strInBinaryContent,
 string strInExtraParam,
 string strInReplyEmail,
 int iInContentType,
 int iInSourceType,

 string &strOutMessageIDs)

Description

This method has the same functionality of SendBinarySMS, which sends a binary SMS
message (the content of which is specified in the parameter strInBinaryContent, which
is a Base64-encoded byte stream) to the (possibly multiple) mobile destinations as
specified in the parameter strInRecipients.

Unlike SendBinarySMS, which mostly accepts contents conformed to the formats
specified by Nokia’s Smart Messaging Protocol, this method accepts additional content
types for handsets by other manufacturers. Hence this method can be considered as an
extended version of and is backward compatible with SendBinarySMS.

The parameter iInContentType specifies the actual type of message to be delivered. It is
the same as the parameter iInType of SendBinarySMS. The parameter iInSourceType
specifies the source type of the supplied content in the parameter strInBinaryContent so
appropriate processing is used to process the content. Accepted source types are (a list
of these types and their descriptions as well as their limitations is given in Appendix C):

 Hex coded byte stream
 Plain text
 Bitmap (.bmp)
 standard over-the-air picture format (.ota)
 mono ring tones in RTTTL format (.rtttl)
 MIDI (.mid)
 Java archive (.jar)
 NA (no specific type, treated depending on iInContentType)

If the source type is plain text, then strInBinaryContent should be just plain text,
although the text will be sent as Base64-encoded byte stream. Thus the method outlined
in section 2.6 that converts content to a byte array should be applied to the text.

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 21 of 74

Note that certain message content types can only accept certain source types. For
instance, operator logos cannot accept mono ring tones in RTTTL format. If these two
types are not compatible, an error code of 1 will be returned.

This method also compensates the limitations of SendBinarySMS, by allowing other
protocols’ binary messages to be sent, e.g. EMS (must be pre-encoded into a HEX string)
and Motorola ring tones (plain text with Motorola’s proprietary ring tone format). For these
messages, the parameter strInExtraParam is ignored and can be empty.

For the descriptions of other parameters and features, refer to SendBinarySMS in
Section 3.2.

Parameters

Parameters Type In/Out Description

All the parameters except the ones below are the same as those in
SendBinarySMS. Refer to Section 3.2 for the descriptions of those
parameters.

iInContentType Integer In This parameter is the same as
iInType of SendBinarySMS with
an additional type for EMS:

 256 = EMS
 848 = Motorola ring tone

iInSourceType Integer In This parameter specifies the
source type of the content:

 0 = NA
 1 = hex coded byte stream
 2 = plain text
 11 = bitmap
 12 = OTA picture
 21 = RTTTL ring tone
 22 = MIDI polyphonic
 23 = java archive

See also

CheckMessageStatus, SendBinarySMS, SendSMS2

Example

See the example of SendBinarySMS in Section 3.2.

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 22 of 74

3.4 SendSMS2

Synopsis

int SendSMS2(string strInSerialNo,
 string strInSMSKey,
 string strInRecipients,
 base64Binary strInContent1,
 string strInContent2,
 string strInOriginator,
 string strInReplyEmail,
 string strInScheduledUTCDateTime,
 int iInMessageType,
 int iInOptions,
 string &strOutMessageIDs)

Description

This method sends either a text or binary SMS message to the (possibly multiple) mobile
destinations as specified in the parameter strInRecipients. It basically combines the
functions of SendTextSMS, SendBinarySMS, and scheduled messaging (see Chapter 5)
into one function. The parameters strInRecipients, strInOriginator and
strInReplyEmail are as in these methods and their descriptions can be found under their
corresponding sections.

For text SMS messages, the parameter strInContent1 contains the message text and the
parameter strInContent2 is ignored. The parameter strInContent1 has the same
functionality as the parameter strInMessageText of SendTextSMS and thus should be
plain text although it is sent as Base64-encoded byte stream. The method outlined in
section 2.6 that converts content to a byte array should be applied to the text. The type of
text SMS messages is specified in iInMessageType. For the description of the types of
text SMS messages and of sending them, please consult SendTextSMS.

For binary SMS messages, the parameter strInContent1 contains the binary content and
strInContent2 contains the extra information, if any, just like the parameters
strInBinaryContent and strInExtraParam of the method SendBinarySMSByContent
respectively. The parameter strInOriginator is ignored and the binary message type and
source type are specified in iInMessageType and iInOptions respectively, just like the
parameters iInContentType and iInSourceType of SendBinarySMSByContent
respectively. If no source type is specified, then the binary content is treated as default
type, as in SendBinarySMS. Unlike SendBinarySMSByContent, which complains about
incompatible content type and source type, if incompatible source type is specified in
iInOptions for the message type specified in iInMessageType, then the source type is
ignored, and the binary content will be treated as the default type for the specified
message type. For the description of the different types of binary SMS messages and of

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 23 of 74

sending them, please consult SendBinarySMS and SendBinarySMSByContent.

The parameter iInOptions also includes the following additional options:

 Confirmation from SMSC (0x100 = 256): if specified, a confirmation will be sent to
strInReplyEmail when the message is successfully dispatched to the SMSC.

 Confirmation from handset (0x200 = 512): if specified, a confirmation will be sent to
strInReplyEmail when the message is successfully delivered to the destination
handsets. This is the case if only the SMSC provides feedback status of the
message.

 Testing mode (0x1000 = 4096): if specified, the message is only treated as a
testing message and will not be dispatched to the SMSC for delivery to the
destination handsets. However, an error code and the message ID will still be
returned and the status of the message can be checked via
CheckMessageStatus (see Section 8.1), which will return “TESTING”. This option
is suitable for testing if the request can be processed successfully without actually
sending the message.

The above options will override the default account settings and hence can be specified
on a message-by-message basis without changing the account settings. The various
options can be combined in iInOptions just by adding up the various options. For
example, if both confirmations from SMSC and handset are requested for the binary
message that contains the OTA picture (source type 12), then 256+512+12 = 780 should
be specified in iInOptions.

A new parameter, strInScheduledUTCDateTime, is added for scheduling the message
for later delivery, similar to the method EnterScheduleExt (see Section 5.2). So with this
parameter, binary SMS messages can also be scheduled for future delivery. This
parameter contains a string that specifies the date time in UTC (GMT) when the message
should be delivered. The format of the string is

YYYYMMDD:HH:MM:SS

 YYYY is the year
 MM is the month (01-12) with leading 0,
 DD is the day of month (01-31) with leading 0
 HH:MM:SS are the hour of day, minutes of hour and seconds of minute in 24 hours

format, all with leading 0
The colon “:” must also be included as specified

For example “20041224:21:30:00” specifies 24 Dec 2004 9:30pm in GMT. Users must
take care of time zone difference and daylight saving when specifying
strInScheduledUTCDateTime, otherwise inaccurate time of delivery may result. Some
source for conversion between GMT and local time can be obtained at
http://www.twinsun.com/tz/tz-link.htm. An online converter can also be accessed at
http://www.worldtimeserver.com/. If strInScheduledUTCDateTime is empty or the date
time specified in it has passed, then the message will be delivered as soon as it has been

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 24 of 74

processed successfully.

Each message deposited for each destination in strInRecipients will be assigned a
unique message identifier, returned via the output parameter strOutMessageIDs. Call
the method CheckMessageStatus (see Section 8.1) to check the status of the message
for a particular destination (delivered, processed etc.).

Parameters

Parameters Type In/Out Description
strInSerialNo String In User serial number
strInSMSKey String In User password (SMSKey)
strInRecipients String In Comma separated list of

recipients’ mobile numbers,
preferably in international
format, e.g.
+4179123123,+6140123123

strInContent1 Base64 In A byte stream encoded with
base64 containing the
message text for text
messages and binary content
for binary messages. See
section 2.6 for how to convert
to a byte stream.

strInContent2 String In This parameter is just the
parameter strInExtraParam of
SendBinarySMSByContent.

strInOriginator String In This parameter is the same
parameter strInOriginator of
SendTextSMS.

strInReplyEmail String In Error notifications and message
delivery confirmations (if
specified in iInOptions) will be
sent to this reply email address.

strInScheduledUTC
DateTime

String In This parameter specifies the
UTC date time in the format
specified above for future
delivery. Message will be sent
immediately if this parameter is
empty.

iInMessageType Integer In This parameter specifies the
type of the text or binary SMS
message to be sent.

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 25 of 74

iInOptions Integer In This parameter specifies the
source type of binary content
(see iInSourceType of
SendBinarySMSByContent)
and the options:

 SMSC confirmation
(256)

 Handset confirmation
(512)

 Testing mode (4096)

strOutMessageIDs String Out Comma separated list of
message identifiers, each
corresponds to the message
sent to a destination in the
same order specified in
strInRecipients, e.g.
+4179123123:123456,
+6140123123:123457

See also

CheckMessageStatus, SendTextSMS, SendBinarySMS, SendBinarySMSByContent,
EnterScheduleExt

Example

See the examples in SendTextSMS, SendBinarySMS and EnterScheduleExt.

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 26 of 74

4. Sending MMS and WAP Push Messages

4.1 CreateMMS

Synopsis

int CreateMMS(string strInSerialNo,
 string strInSMSKey,
 string &strInOutTransactionID)

Description

This method allocates resources for creating an empty MMS message to be sent later
using the method SendMMS (see Section 4.3) after the individual parts are added to it
using the method AddMMSContent (see Section 4.2).

Because MMS messages can contain multiple parts (they are MIME multipart
documents), the sending of a MMS message is broken down into 3 steps:

1. Create an empty MMS
2. Add individual parts to the MMS
3. Send the MMS

This method allocates the necessary resources and creates an empty MMS message
with a unique transaction ID. A user-defined unique ID can be set in the parameter
strInOutTransactionID to uniquely identify this MMS message. Alternatively, this
parameter should be set to blank and the method will automatically allocate a unique ID
for this message, returned again via the parameter strInOutTransactionID.

redcoal supports two types of MMS messages. The first type of MMS message has a
MIME content type ‘multipart/mixed’ where no specific presentation is required. The
various contents of the MMS message (identified by the transaction ID), e.g. plain text,
pictures and sound/speech clips, are then added one at a time, by calling the method
AddMMSContent. When all contents are added, the method SendMMS is used to send
the whole MMS message (in fact, only a notification message is sent to the destination
handset, when the handset can retrieve the actual MMS message from the MMS
gateway). The contents of the message will be displayed on the destination handset in
the same order. Hence the order of addition determines the order of content presentation.

The second type of MMS message has a MIME content type ‘multipart/related’ where
specific presentation is specified in a user-provided SMIL document, which is also part of
the MMS message. Hence the SMIL document is mandatory for sending SMIL MMS
message and must be added to the MMS message using the method AddMMSContent
as well. Other parts are added using AddMMSContent in the same way as for the first

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 27 of 74

type of MMS message. However the order of addition is not important here since the
order of presentation is specified in the SMIL document.

The type of MMS message created is not decided in this method since both types are
created the same way. The type of MMS message to be sent is actually decided when
calling the method SendMMS, when it finds a SMIL document previously added using
AddMMSContent, the MMS message will be sent as the ‘multipart/related’ SMIL MMS
message. Otherwise it is sent as the ‘multipart/mixed’ MMS message.

Parameters

Parameters Type In/Out Description
strInSerialNo String In User serial number
strInSMSKey String In User password (SMSKey)
strInOutTransactionID String In/Out The ID that uniquely identifies

the MMS message.

See also

AddMMSContent, SendMMS

Example

.

.
Dim strInSerialNo As String = "my serial number"
Dim strInSMSKey As String = "my SMS key"

'---an empty transaction ID is used
Dim strInOutTransactionID As String
.
.
Dim Result As Integer
Result = ws.CreateMMS(strInSerialNo,
 strInSMSKey,
 strInOutTransactionID)
'---an automatically generated transaction ID
'---is given out in strInOutTransactionID
.
.

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 28 of 74

4.2 AddMMSContent

Synopsis

int AddMMSContent(string strInSerialNo,
 string strInSMSKey,

 string strInTransactionID,
 base64Binary strInContent,
 string strInContentType
 string strInContentLocationOrID)

Description

This method adds one content part to the MMS message (previously created by the
method CreateMMS) identified by the transaction ID in the parameter
strInTransactionID.

The transaction ID strInTransactionID is either the user supplied ID used in the previous
call to the method CreateMMS, or the returned ID from the previous call to CreateMMS.

There is practically no limit as to how many parts can be added to a single MMS
message, but this is subject to the limit imposed by the wireless operator of the
destination handset. An earlier common denominator of the MMS message size was 30K,
but this has increased, and is still increasing, to some larger size, depending on the
wireless operators.

For ‘multipart/mixed’ MMS message, the display order of the contents on the screen of
the destination handset is the same as the order of addition. For ‘multipart/related’ SMIL
MMS message, the presentation is determined by the user-supplied SMIL document, also
added using this method, but the order of addition of various content parts is irrelevant.

Each part has its own content, specified in the parameter strInContent, which is a
Base64-encoded byte stream. The content type of the content is specified in the
parameter strInContentType. Currently supported types are:

 text/plain – plain text
 image/gif – GIF pictures (.gif)
 image/jpeg – JPEG pictures (.jpg, .jpe, .jpeg)
 image/bmp – Bitmap pictures (.bmp), subject to handset interpretation
 audio/midi – MIDI sound clips (.mid, .midi)
 audio/amr – adaptive multi-rate (AMR) voice clips, see IETF RFC 3267 at

http://www.ietf.org/
 application/smil – SMIL document conforming to MMS standard

If the content type is plain text or SMIL document, then strInContent should be just plain

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 29 of 74

text, although the text will still be encoded as base64 byte stream.

For SMIL MMS message, there should be at least one SMIL document present by which
the internal system recognizes the type of MMS message to be sent. Subsequent SMIL
documents can also be added but only the first SMIL document will be used as the
starting document of the whole MMS message, i.e. the first part of the ‘multipart/related’
MMS message.

There are basically two ways to refer to different content parts of the MMS message
within the SMIL document: by Content-Location or Content-ID:

 For Content-Location, the URL specifies the location of the content within the MMS
message, usually the filename of the content.

 For Content-ID, the URL specifies the ID of the content within the MMS message,
in the format “cid:content-id” where “cid:” is the scheme (see IETF RFC 2392)
and “content-id” is some user-defined ID for the specified content.

These URL must be specified within the MMS message as well and must match those
specified within the SMIL document. Hence a URL must be specified for each content
part (except the SMIL document itself) within the SMIL MMS message, in the parameter
strInContentLocationOrID. These URL will be encoded appropriately within the MMS
message. The type of URL will be recognized as follows:

 If the parameter strInContentLocationOrID contains the format “cid:content-id”,
then it is treated as a Content-ID.

 Otherwise, if the parameter strInContentLocationOrID contains some text without
the scheme “cid:” then it is treated as a Content-Location.

For ‘multipart/mixed’ MMS message, the Content-Location or Content-ID specified in
strInContentLocationOrID is optional because the various content parts are displayed in
strict order without need for any reference. However, if the Content-Location or Content-
ID is specified, it will be encoded within the MMS message. This will not alter the
presentation but can be used to name the different content parts within the MMS
message. Some handsets will use these default names when asked to save the individual
content parts inside the handset stores.

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 30 of 74

Parameters

Parameters Type In/Out Description
strInSerialNo String In User serial number
strInSMSKey String In User password (SMSKey)
strInTransactionID String In The ID that uniquely

identifies the MMS
message.

strInContent Base64 In A byte stream encoded
with base64 containing the
actual content. See section
2.6 for how to convert a
binary file to a byte stream.

strInContentType String In The content type of the
content in strInContent.
The type can be specified
as one of the following:

 text/plain
 image/gif
 image/jpeg
 image/bmp
 audio/midi
 audio/amr
 application/smil

strInContentLocationOrID String In The Content-Location or
the Content-ID in the
format “cid:content-id” of
the content part.

See also

CreateMMS, SendMMS

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 31 of 74

Example

.

.
Dim strInSerialNo As String = "my serial number"
Dim strInSMSKey As String = "my SMS key"
Dim strInOutTransactionID As String
.
.
'---CreateMMS must be called first to get the
'---returned transaction ID in strInOutTransactionID
.
.
'---a JPEG picture will be added
'---byteRead is a byte array of length (a)
'---that contains the content of the JPEG file,
'---obtained as in section 2.6
Dim byteRead(a) As Byte
Dim strInContentType As String = "image/jpeg"
'---use the filename as the Content-Location
Dim strInContentLocationOrID As String = "pic.jpg"

Dim Result As Integer
Result = ws.AddMMSContent(strInSerialNo,
 strInSMSKey,
 strInOutTransactionID,

 byteRead,
 strInContentType,
 strInContentLocationOrID)
.
.

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 32 of 74

4.3 AddBase64MMSContent

Synopsis

int AddBase64MMSContent(string strInSerialNo,
 string strInSMSKey,

 string strInTransactionID,
 string strInBase64Content,
 string strInContentType
 string strInContentLocationOrID)

Description

This method has exactly the same function as AddMMSContent. This method provides
an alternative way to add content parts to MMS message. The only difference between
AddMMSContent and AddBase64MMSContent is:

 In AddMMSContent, the input parameter strInContent is a Base64-encoded byte
stream.

 In AddBase64MMSContent, the input parameter strInBase64Content is a
Base64-encoded string.

The content needs to be pre-Base64-encoded by the user and the result (a string) is then
put in the parameter strInBase64Content. The encoding is needed even for plain text
content.

If the parameter strInBase64Content is not Base64-encoded, then a return code of 14
will be returned by this method.

Parameters

Parameters Type In/Out Description

All the parameters except strInBase64Content are the same as those of
AddMMSContent. Refer to Section 4.2 for the descriptions of those
parameters.

strInBase64Content String In A string encoded with base64
containing the actual content.

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 33 of 74

See also

AddMMSContent

Example

.

.
Dim strInSerialNo As String = "my serial number"
Dim strInSMSKey As String = "my SMS key"
Dim strInOutTransactionID As String
.
.
'---CreateMMS must be called first to get the
'---returned transaction ID in strInOutTransactionID
.
.
'---a JPEG picture will be added
Dim strInBase64Content As String
'---strInBase64Content should contain
'---the base64-encoded string of the JPEG file
Dim strInContentType As String = "image/jpeg"
'---use the filename as the Content-Location
Dim strInContentLocationOrID As String = "pic.jpg"

Dim Result As Integer
Result = ws.AddBase64MMSContent(
 strInSerialNo,
 strInSMSKey,
 strInOutTransactionID,
 strInBase64Content,
 strInContentType,
 strInContentLocationOrID)
.
.

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 34 of 74

4.4 SendMMS

Synopsis

int SendMMS(string strInSerialNo,
 string strInSMSKey,
 string strInTransactionID,
 string strInRecipients,
 string strInSubject,
 string strInReplyEmail,
 string &strOutMessageIDs)

Description

This method sends a MMS-notification message for the MMS message identified by the
transaction ID in the parameter strInTransactionID, to the (possibly multiple) mobile
destinations as specified in the parameter strInRecipients.

The MMS-notification message is just a notification to the destination handsets, upon
receiving the handset will retrieve the actual MMS message (if the handset is setup to
retrieve MMS message) from the redcoal MMS Gateway.

The MMS message identified by strInTransactionID must be previously created using
the method CreateMMS and have at least one content part added to it using the method
AddMMSContent. If no content part is previously added to the MMS message, this
method will not send any MMS message and will return error code 44 (empty MMS
message content).

The type of MMS message depends on the contents previously added. If a SMIL
document is added, then the MMS message is of type ‘multipart/related’. If no SMIL
document is added before, then the MMS message is of type ‘multipart/mixed’.

An optional parameter strInSubject is used to give the MMS message a subject. The use
of this parameter is just like the subject field of emails. If strInSubject is blank, then a
default subject “MMS” will be substituted.

The email address of the sender specified in the parameter strInReplyEmail will be used
as the sender of the MMS message, if the “include email address” setting in the account
setting under the ‘Services’ page of the login section is enabled. If this setting is disabled,
the email address in strInReplyEmail will not be included and so the sender of the MMS
message will be anonymous. A notification will be sent to the sender via email specified in
the parameter strInReplyEmail when one of the situations outlined in section 2.4 occurs.

Each MMS-notification (not the actual MMS message which is identified by the
transaction ID) deposited for each destination in strInRecipients will be assigned a

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 35 of 74

unique message identifier, returned via the output parameter strOutMessageIDs. Call
the method CheckMessageStatus (see Section 8.1) to check the status of the message
for a particular destination (downloaded, processed etc.).

Some wireless operators have a restricting policy that prohibit their subscribers from
retrieving MMS messages from 3rd party MMS server such as redcoal’s MMS gateway.
The consequence is that the destination handset will not be able to retrieve the actual
MMS message.

To get around this problem, redcoal has devised to send a WAP Push version of the
MMS message to the destination handset if redcoal’s MMS gateway has not detected that
the destination handset has retrieved the MMS message stored on it within 3 minutes
after the MMS notification message has been sent. If the actual MMS message has been
retrieved within 3 minutes, then this extra WAP Push version will not be sent.

The WAP Push version is sent as a Service Indication (see SendWAPSI in Section 4.4).
The user of the destination handset can then retrieve a WML-encoded version of the
MMS message via the URL specified in the WAP Push message. This is all done within
the same function of SendMMS so there is nothing more to be done at the user’s side.
Note this feature is only available for MMS messages of type ‘multipart/mixed’.

Parameters

Parameters Type In/Out Description
strInSerialNo String In User serial number
strInSMSKey String In User password (SMSKey)
strInTransactionID String In The ID that uniquely identifies

the MMS message.
strInRecipients String In Comma separated list of

recipients’ mobile numbers,
preferably in international
format, e.g.
+4179123123,+6140123123

strInSubject String In The subject of the MMS
message.

strInReplyEmail String In Used as the sender of the MMS
message (if enabled). Error
notifications and message
delivery confirmations (if
enabled) will be sent to this
reply email address.

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 36 of 74

strOutMessageIDs String Out Comma separated list of
message identifiers, each
corresponds to the message
sent to a destination in the
same order specified in
strInRecipients, e.g.
+4179123123:123456,
+6140123123:123457

See also

CheckMessageStatus, CreateMMS, AddMMSContent, SendWAPSI

Example

.

.
Dim strInSerialNo As String = "my serial number"
Dim strInSMSKey As String = "my SMS key"
Dim strInOutTransactionID As String
.
.
'---CreateMMS must be called first to get the
'---returned transaction ID in strInOutTransactionID
'---then various content parts should also be
'---added to the MMS message by AddMMSContent
.
.
Dim strInRecipients As String =
 "+4179123123,+6140123123"
Dim strInSubject As String = "Some Subject"
Dim strInReplyEmail As String = "myemail@mycom.com"
Dim strOutMessageIDs As String
Dim Result As Integer
Result = ws.SendMMS(strInSerialNo,
 strInSMSKey,
 strInOutTransactionID,

 strInRecipients,
 strInSubject,
 strInReplyEmail,
 strOutMessageIDs)
.
.

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 37 of 74

4.5 SendWAPSI

Synopsis

int SendWAPSI(string strInSerialNo,
 string strInSMSKey,
 string strInRecipients,
 string strInURL,
 string strInContent,
 string strInReplyEmail,
 string &strOutMessageIDs)

Description

This method sends a special kind of WAP Push message called Service Indication (SI) to
the (possibly multiple) mobile destinations as specified in the parameter strInRecipients.

The destination handsets must support WAP 1.2 or later version. The SI message is like
a WAP bookmark message where it specifies the URL of a resource (in the parameter
strInURL) that can be downloaded via WAP. This is useful, e.g. to allow user to download
pictures or ring tones without manually typing in the URL in the WAP browser of the
handset. The parameter strInContent contains the name (title) of the URL.

A notification will be sent to the sender via email specified in the parameter
strInReplyEmail when one of the situations outlined in section 2.4 occurs.

Each SI message deposited for each destination in strInRecipients will be assigned a
unique message identifier, returned via the output parameter strOutMessageIDs. Call
the method CheckMessageStatus (see Section 8.1) to check the status of the message
for a particular destination (delivered, processed etc.).

Parameters

Parameters Type In/Out Description
strInSerialNo String In User serial number
strInSMSKey String In User password (SMSKey)
strInRecipients String In Comma separated list of

recipients’ mobile numbers,
preferably in international format,
e.g. +4179123123,+6140123123

strInURL String In The URL (WAP bookmark) of the
resource in plain text.

StrInContent String In The name (title) of the URL.

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 38 of 74

strInReplyEmail String In Error notifications and message
delivery confirmations (if enabled)
will be sent to this reply email
address.

strOutMessageIDs String Out Comma separated list of message
identifiers, each corresponds to the
message sent to a destination in
the same order specified in
strInRecipients, e.g.
+4179123123:123456,
+6140123123:123457

See also

CheckMessageStatus

Example

.

.
Dim strInSerialNo As String = "my serial number"
Dim strInSMSKey As String = "my SMS key"
Dim strInRecipients As String =
 "+4179123123,+6140123123"
Dim strInURL As String = "http://wap.mycom"
Dim strInContent As String = "A WAP SI"
Dim strInReplyEmail As String = "myemail@mycom.com"
Dim strOutMessageIDs As String
.
.
Dim Result As Integer
Result = ws.SendWAPSI(strInSerialNo,
 strInSMSKey,
 strInRecipients,
 strInURL,
 strInContent,
 strInReplyEmail,
 strOutMessageIDs)
.
.

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 39 of 74

5. Scheduled Messaging

5.1 EnterSchedule

Synopsis

int EnterSchedule(string strInSerialNo,
 string strInSMSKey,
 string strInRecipients,
 string strInMessageText,
 string strInReplyEmail,
 string strInOriginator,
 double dInDateTime,
 double dInRefTime,
 int iInType)

Description

This method schedules a text SMS message (the content of which is specified in the
parameter strInMessageText) to be sent in the future to the (possibly multiple) mobile
destinations as specified in the parameter strInRecipients. For scheduling a binary SMS
message, user should use the method SendSMS2 in Section 3.4. Currently, there is no
provisioning of scheduling MMS messages.

The SM can be a simple one-way message, a two-way message, or a flash message as
specified in the parameter iInType. For the descriptions of these message types, as well
as of the parameters strInReplyEmail and strInOriginator, see SendTextSMS in
Section 3.1.

The future date time when the scheduled message should be sent is specified in the
parameter dInDateTime, which must be a number of type double. There are conversion
functions that can convert a date time object or a date time string to double number in
many development environment. Consult the appropriate programming reference manual
for details.

The other parameter dInRefTime is used as a reference time, also must be a number of
type double. It is basically the user local time and can be obtained by first getting the local
time and then converting it to double number. This reference time is used to correct any
time difference around the globe. For instance, a message is scheduled to be sent 30
hours from now in UK. The time difference between UK and the redcoal gateway at
Sydney is +10 hour (+11 if daylight saving is on). If only dInDateTime is used, the
message will be sent 10 hours before the actual scheduled time. But with dInRefTime,
the message will be sent at time (dInDateTime –dInRefTime) to correct for the time
difference.

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 40 of 74

Parameters

Parameters Type In/Out Description

All the parameters except the ones below are the same as those in
SendTextSMS. Refer to that section for the descriptions of those
parameters.

dInDateTime Double In This is the date time when the
message is scheduled to be sent,
in double number format.

dInRefTime Double In This is the user local date time
used as a reference time to
correct time difference, in double
number format.

See also

SendTextSMS, SendSMS2, EnterScheduleExt

Notes

This method is superseded by the method EnterScheduleExt. It is only provided here for
backward compatibility.

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 41 of 74

Example

.

.
Dim strInSerialNo As String = "my serial number"
Dim strInSMSKey As String = "my SMS key"
Dim strInRecipients As String =
 "+4179123123,+6140123123"
Dim strInMessageText As String = "A text message"
Dim strInReplyEmail As String = "myemail@mycom.com"
Dim strInOriginator As String = "originator"
Dim iInType As Integer = 0 '---one way message

'---dInDateTime contains the future date time
'---dInRefTime contains the local date time
Dim dInDateTime As Double
Dim dInRefTime As Double
.
.
Dim Result As Integer
Result = ws.EnterSchedule(strInSerialNo,
 strInSMSKey,
 strInRecipients,
 strInMessageText,
 strInReplyEmail,
 strInOriginator,
 dInDateTime,
 dInRefTime,
 iInType)
.
.

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 42 of 74

5.2 EnterScheduleExt

Synopsis

int EnterScheduleExt(string strInSerialNo,
 string strInSMSKey,

 string strInRecipients,
 string strInMessageText,
 string strInReplyEmail,
 string strInOriginator,
 string dInDateTime,
 string dInRefTime,

 string iInType,
 string &strOutMessageIDs)

Description

This method schedules a text SMS message (the content of which is specified in the
parameter strInMessageText) to be sent in the future to the (possibly multiple) mobile
destinations as specified in the parameter strInRecipients.

This method has the same functionality as EnterSchedule, with an additional output
parameter strOutMessageIDs that returns the scheduled message identifiers. The
message identifiers returned then permit future status checking by
CheckMessageStatus (see Section 8.1) or schedule deletion by DeleteSchedule (see
Section 5.3). For the descriptions of all other parameters, see the section for the method
EnterSchedule.

Each scheduled message deposited for each destination in strInRecipients will be
assigned a unique message identifier, returned via the output parameter
strOutMessageIDs. Call the method CheckMessageStatus to check the status of the
message for a particular destination (delivered, processed etc.).

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 43 of 74

Parameters

Parameters Type In/Out Description

All the parameters except the one below are the same as those in
EnterSchedule. Refer to that section for the descriptions of those
parameters.

strOutMessageIDs String Out Comma separated list of
message identifiers, each
corresponds to the message sent
to a destination in the same order
specified in strInRecipients, e.g.
+4179123123:123456,
+6140123123:123457

See also

CheckMessageStatus, DeleteSchedule, EnterSchedule, SendTextSMS, SendSMS2

Example

See the example in the section of EnterSchedule.

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 44 of 74

5.3 DeleteSchedule

Synopsis

int DeleteSchedule(string strInSerialNo,
 string strInSMSKey,
 string strInMessageIDs)

Description

This method deletes the schedule of a message previously entered by
EnterScheduleExt or SendSMS2, identified by the message identifier strInMessageIDs.

The parameter strInMessageIDs is the output parameter strOutMessageIDs of the
method EnterScheduleExt or SendSMS2, that contains for each comma separated
destination handset, a unique message ID. The format of this output parameter should be
passed on, as is, to the input parameter strInMessageIDs of this method.

The scheduled messages are deleted by this method only if they have not been
dispatched to the SMSC successfully, i.e. only if the scheduled messages are still in the
status of “PENDING”, “RETRY”, “FAIL” and “FUTURE”.

Note that only the schedule associated with the messages identified by strInMessageIDs
is deleted. The actual messages are still stored at the system, but with the status,
CANCELLED, such that the user can still check the status of these messages by
CheckMessageStatus (see Section 8.1).

Parameters

Parameters Type In/Out Description
StrInSerialNo String In User serial number
strInSMSKey String In User password (SMSKey)
strInMessageIDs String In Comma separated list of

message identifiers obtained
from EnterScheduleExt, e.g.
+4179123123:123456,
+6140123123:123457

See also

CheckMessageStatus, EnterScheduleExt, SendSMS2

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 45 of 74

Example

.

.
Dim strInSerialNo As String = "my serial number"
Dim strInSMSKey As String = "my SMS key"
Dim strInOutMessageIDs As String
.
.
'---
'---EnterScheduleExt or SendSMS2 are called
'---to enter the scheduled messages
'---and the message identifiers
'---are stored in strInOutMessageIDs
.
.
Dim Result As Integer
Result = ws.DeleteSchedule(strInSerialNo,
 strInSMSKey,
 strInOutMessageIDs)
.
.

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 46 of 74

6. Receiving Incoming Messages

6.1 GetIncomingMessage

Synopsis

int GetIncomingMessage(string strInSerialNo,
 string strInSMSKey,
 string strInReplyEmail,
 string &strOutSender,
 string &strOutMessageContent,
 string &strOutTimeStamp,
 int &iOutMessagesLeft)

Description

This method retrieves SMS replies (of previously sent two-way messages) sent to the
email address specified in the parameter strInReplyEmail.

By default, the SMS replies are already forwarded to the email address of the sender in
strInReplyEmail. This method provides an additional programmatic way to retrieve SMS
replies such that user applications can display these replies in their own manner.

All SMS replies to the specified email address in strInReplyEmail that are not yet
retrieved via this method will be retrieved. However, only the first one will be returned.
Subsequent calls to this method retrieve the rest. The output parameter
iOutMessagesLeft returns how many more replies (excluding the current one) need to
be retrieved so the user knows how many subsequent calls to this method should be
made.

The following information of the reply will be returned:

 Sender of the reply (receiver of the previous two-way message) in the output
parameter strOutSender.

 Actual content of the reply message in the output parameter
strOutMessageContent.

 The date time of the reply received by the gateway in the output parameter
strOutTimeStamp.

If a call is made to this method when there is no more reply, all the above 3 output
parameters are left unchanged and iOutMessagesLeft will be 0.

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 47 of 74

Parameters

Parameters Type In/Out Description
strInSerialNo String In User serial number
strInSMSKey String In User password (SMSKey)
strInReplyEmail String In The reply email address to

which the retrieved SMS
replies are sent.

strOutSender String Out The sender of the reply (the
receiver of the previous two-
way message).

strOutMessageContent String Out The content of the reply.
strOutTimeStamp String Out The date time of the reply.
iOutMessagesLeft Integer Out The number of replies to be

retrieved (excluding this one).

See also

SendTextSMS

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 48 of 74

Example

.

.
Dim strInSerialNo As String = "my serial number"
Dim strInSMSKey As String = "my SMS key"
Dim strInReplyEmail As String = "myemail@mycom.com"
Dim strOutSender As String
Dim strOutMessageContent As String
Dim strOutTimeStamp As String
Dim iOutMessagesLeft As Integer = 0
.
.
Dim Result As Integer
DO
 Result = ws.GetIncomingMessage(
 strInSerialNo,
 strInSMSKey,
 strInReplyEmail,
 strOutSender,
 strOutMessageContent,
 strOutTimeStamp,
 iOutMessagesLeft)

IF Result = 0 THEN
'---read the reply message

ELSE
'---error handling
EXIT DO

END IF
LOOP WHILE iOutMessagesLeft > 0
.
.

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 49 of 74

7. Groups Management

7.1 CreateGroup

Synopsis

int CreateGroup(string strInSerialNo,
 string strInSMSKey,

 string strInGroupName,
 string strInGroupMembers,
 int &iOutMembersCreated)

Description

This method creates a group for the user with the name specified in strInGroupName,
that can be later used for multicasting messages.

Users can multicast messages to a group of destination handsets by specifying the group
name in the parameter strInRecipients of the various ‘Send…’ methods or scheduling
methods. This is a very convenient way of specifying a large number of destinations.

Before users can specify a group name to send, a group needs to be created first. A
group can either be created manually by redcoal upon request or by calling this method.
The parameter strInGroupName specifies the name of the group to be created. Any
existing group of the user with the same name as strInGroupName will be overwritten.

The members of the group are specified in the parameter strInGroupMembers. This
parameter is a string in the following format:

<Member Name 1>,<Mobile Number 1>[,Attributes];...;
<Member Name N>,<Mobile Number N>[,Attributes]

Members are separated by semi-colon “;”. Each member has a number of fields,
separated by comma “,”:

 The first field is always the name of the member, which can be empty but the
trailing comma is still required.

 The second field is always the valid destination mobile number of the member,
which can also be empty (although it is pointless to have empty mobile number). If
the mobile number is invalid, then this field will also be left empty.

The rest of the fields “Attributes” is optional. The format of it is

Attribute_1=Value_1,...,Attribute_N=Value_N

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 50 of 74

where each of the “Attribute_i" is the name of an attribute for this member and
“Value_i" is the corresponding value of this attribute for this member. So it is
flexible for the user to choose whatever number of attributes and their values to
include for each of the members. These attribute values are useful for mail merge
when the user multicasts a message to this group with all attribute names in the
text of the message replaced by their corresponding values for each member of
the group. Users not concerned of this can just ignore all these attributes.

This method returns the number of members actually created for this group in the output
parameter iOutMembersCreated. If there is none created, i.e. iOutMembersCreated
contains 0, then the group itself is not created. If the group name specified in
strInGroupName is empty, an error code of 31 will be returned. If the member list
specified in strInGroupMembers is empty, an error code of 32 will be returned. In either
case, the group will not be created.

Subsequent check of all the groups and their members created can be done by the
methods GetListNames and GetListEntries (see Sections 7.1 and 7.2).

There is no method of adding extra members to an existing group. If adding members is
desired, user can call CreateGroup again with the same group name and a complete list
of members (including the extra members to be added).

Parameters

Parameters Type In/Out Description
strInSerialNo String In User serial number
strInSMSKey String In User password (SMSKey)
strInGroupName String In Name of the created group.
strInGroupMembers String In A string of members of the

group formatted as explained
above.

iOutMembersCreated Integer Out The returned number of
members created for this group.

See also

GetListNames, GetListEntries

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 51 of 74

Example

.

.
Dim strInSerialNo As String = "my serial number"
Dim strInSMSKey As String = "my SMS key"
'---create a group called “TestGroup”
Dim strInGroupName As String = "TestGroup"
'---with 3 members
Dim strInGroupMembers As String =
 "Name1,Mobile1;Name2,Mobile2;Name3,Mobile3"
Dim iOutMembersCreated As Integer
.
.
Dim Result As Integer
Result = ws.CreateGroup(strInSerialNo,
 strInSMSKey,

strInGroupName,
 strInGroupMembers,

iOutMembersCreated)
.
.

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 52 of 74

7.2 GetListNames

Synopsis

int GetListNames(string strInSerialNo,
 string strInSMSKey,

 string &strOutListNames)

Description

This method returns the IDs, names and number of members of all the groups belonging
to the user account in the output parameter strOutListNames.

The format of strOutListNames is as follows:

<Group Info 1>;...;<Group Info N>

Group information blocks are separated by “;”. Each group information block comprises
of 3 fields separated by “;” again, formatted as follows:

<Group ID>;<Group Name>;<Number of Members>

The group ID is an internally assigned ID for the group. This ID is returned so that user
can use this ID to query members in this group by calling GetListEntries (see Section
7.3). Group name is the name specified in strInGroupName when calling CreateGroup
(see Section 7.1). The last field is the number of members created for this group. If there
is no group in the user account, the output parameter strOutListNames will be empty.

For example, suppose a user has 3 groups named “Group1”, “Group2” and “Group3” with
assigned IDs 101,102 and 103, and each group has 3 members. Then the following will
be returned in strOutListNames:

101;Group1;3;102;Group2;3;103;Group3;3

Parameters

Parameters Type In/Out Description
strInSerialNo String In User serial number
strInSMSKey String In User password (SMSKey)
strOutListNames String Out A string of groups information

formatted as explained above.

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 53 of 74

See also

CreateGroup, GetListEntries

Example

.

.
Dim strInSerialNo As String = "my serial number"
Dim strInSMSKey As String = "my SMS key"
Dim strOutListNames As String 'output parameter
.
.
Dim Result As Integer
Result = ws.GetListNames(strInSerialNo,
 strInSMSKey,

strOutListNames)
.
.

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 54 of 74

7.3 GetListEntries

Synopsis

int GetListEntries(string strInSerialNo,
 string strInSMSKey,
 int iInListID,
 string &strOutListEntries)

Description

This method returns the names and mobile numbers of all the members of a group in the
output parameter strOutListEntries.

The group to be queried is specified by its ID in iInListID. This ID is obtained from calling
GetListNames (see Section 7.2). The format of the output parameter strOutListEntries
is as follows:

<Member Info 1>;<Member Info N>

Member information blocks are separated by “;”. Each member information block
comprises of 2 fields separated by “;” again, formatted as follows:

<Member Mobile>;<Member Name>

If any of the fields is empty (as allowed by CreateGroup), then the corresponding field
position is also empty. If there is no member in the group, the output parameter
strOutListEntries will be empty.

For example, suppose a user wants to query a group which has 3 members. The first and
third members have names “Member1” and “Member3” respectively while the second
member has no name. The members have mobile numbers “Mobile1”, “Mobile2” and
“Mobile3” respectively. Then the following will be returned in strOutListEntries:

Mobile1;Member1;Mobile2;;Mobile3;Member3

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 55 of 74

Parameters

Parameters Type In/Out Description
strInSerialNo String In User serial number
strInSMSKey String In User password (SMSKey)
iInListID Integer In ID of the group to be queried.
strOutListEntries String Out A string of members information

of the group formatted as
explained above.

See also

CreateGroup, GetListNames

Example

.

.
Dim strInSerialNo As String = "my serial number"
Dim strInSMSKey As String = "my SMS key"
Dim iInListID As Integer = 101 'Group ID 101
Dim strOutListEntries As String 'output parameter
.
.
Dim Result As Integer
Result = ws.GetListNames(strInSerialNo,
 strInSMSKey,
 iInListID,

strOutListEntries)
.
.

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 56 of 74

8. Miscellaneous Methods

8.1 CheckMessageStatus

Synopsis

int CheckMessageStatus(string strInSerialNo,
 string strInSMSKey,
 string strInMessageIDs,
 string &strOutMessageStatus)

Description

This method checks the status of previously deposited messages identified by the
parameter strInMessageIDs.

The parameter strInMessageIDs is the output parameter strOutMessageIDs of the
various ‘Send…’ methods or EnterScheduleExt (see Section 5.2), that contains for each
comma separated destination handset, a unique message ID. The format of this output
parameter should be passed on, as is, to the input parameter strInMessageIDs of this
method.

The current status of these messages will be returned in the parameter
strOutMessageStatus. The format of the output is a comma separated list of message
ID-status pairs:

messageID_1=status_1,...,messageID_n=status_n

Possible message status are:

Returned Status Description
OK The message has been dispatched to the SMSC

successfully.
PENDING The message is stored at the gateway waiting to

be dispatched to the SMSC.
PROCESSING The message is being processed, i.e. being

dispatched to the SMSC. A message is only in
this state for a very short time and should
ultimately change to one of the other status so
users will not see this status very often.

CONFIRMED The message has been delivered to the
destination handset successfully (if confirmation
notification is enabled, see Section 2.4).

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 57 of 74

REPLIED The message has been delivered to the
destination handset successfully and the receiver
has replied this message with the reply message
sent to the reply email address of the sender.
This only applies to two-way messages (see the
method SendTextSMS in Section 3.1).

DOWNLOADED This status pertains to MMS messages. It
indicates that the MMS message has been
retrieved or that a WAP Push version of it has
been downloaded by the destination handset (see
Chapter 4).

RETRY The message fails to be dispatched to the SMSC,
but the gateway will retry later.

FAIL_reason The message has been dispatched to the SMSC
successfully but a failure receipt is returned from
the SMSC. The reason of the failure at the SMSC
is included as “reason”.

ABORT The message has experienced prolonged failure
and is thus aborted.

FUTURE The message is scheduled to be sent in the
future. The date time of the schedule is however
not shown. See the methods EnterSchedule and
EnterScheduleExt (Sections 5.1 and 5.2).

CANCELLED /
CANCEL

The message previously scheduled to be sent in
the future by EnterScheduleExt has been
cancelled by DeleteSchedule (see Section 5.3).

TESTING The message is for testing purpose only and will
not be dispatched.

INVALID The message stored at the gateway was found to
be invalid when the gateway is trying to dispatch
it to the SMSC. This status mainly pertains to
group sending when a user submits a message to
a group (see Chapter 7). The group is expanded
only when it is about to be sent, when the
gateway may find out that the group is invalid, or
one or more of the member destinations in the
group are invalid.

NA The message identifier is invalid or the message
with the identifier is not found in the system
database.

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 58 of 74

Parameters

Parameters Type In/Out Description
strInSerialNo String In User serial number
strInSMSKey String In User password (SMSKey)
strInMessageIDs String In Comma separated list of

message identifiers obtained
from the various ‘Send…’
methods or EnterScheduleExt,
e.g. +4179123123:123456,
+6140123123:123457

strOutMessageStatus String Out Comma separated list of
message ID-status pairs, e.g.
123456=OK,123457=PENDING

See also

The various ‘Send…’methods, EnterSchedule, EnterScheduleExt, DeleteSchedule

Example

.

.
Dim strInSerialNo As String = "my serial number"
Dim strInSMSKey As String = "my SMS key"
Dim strInOutMessageIDs As String
.
.
'---some Send... methods
'---or EnterScheduleExt are called
'---and the message identifiers
'---are stored in strInOutMessageIDs
.
.
Dim strOutMessageStatus As String
Dim Result As Integer
Result = ws.CheckMessageStatus(strInSerialNo,
 strInSMSKey,
 strInOutMessageIDs,
 strOutMessageStatus)
.
.

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 59 of 74

8.2 GetCreditsLeft

Synopsis

int GetCreditsLeft(string strInSerialNo,
 string strInSMSKey,
 double &dOutCreditsLeft)

Description

This method returns how many credits or message quota are left for this user account in
the output parameter dOutCreditsLeft.

Each SMS or MMS message that is sent using the various ‘Send…’ methods will be
charged for certain credits in the user account. It is sometimes useful to check how many
credits are left. These credits are of type double since fractional credits could be charged,
which is more flexible. However, they are usually integers (but formatted as double
numbers).

Parameters

Parameters Type In/Out Description
strInSerialNo String In User serial number
strInSMSKey String In User password (SMSKey)
dOutCreditsLeft Double Out The returned number of credits

or message quota left for this
account, in double numbers.

Example

.

.
Dim strInSerialNo As String = "my serial number"
Dim strInSMSKey As String = "my SMS key"
Dim dOutCreditsLeft As Double
Dim Result As Integer
Result = ws.GetCreditsLeft(strInSerialNo,

 strInSMSKey,
 dOutCreditsLeft)
.
.

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 60 of 74

8.3 GetLicenseInformation

Synopsis

int GetLicenseInformation(string strInSerialNo,
 string strInSMSKey,
 string &strOutLicenseInfo)

Description

This method returns the information of the license of MIDA usage for the user in the
output parameter strOutLicenseInfo. Note that MIDA allows a trial period of 30 days,
after which, a fixed one-shot license payment is needed to continuing accessing MIDA.

The output parameter strOutLicenseInfo is a string that contains license information
such as

 MIDA Version, currently it is 7.1.
 The name of the licensee and organization.
 If the license is an evaluation version (which normally has 30 days trial period),

then the expiry date is given. The expiry date format is in mm/dd/yy.
 If the license is permanent, then the number of licenses (the number of licensed

users) is given.
 The registered country.

Parameters

Parameters Type In/Out Description
strInSerialNo String In User serial number
strInSMSKey String In User password (SMSKey)
strOutLicenseInfo String Out The license information.

Example

Dim strInSerialNo As String = "my serial number"
Dim strInSMSKey As String = "my SMS key"
Dim strOutLicenseInfo As String
Dim Result As Integer
Result = ws.GetLicenseInformation(strInSerialNo, strInSMSKey,
 strOutLicenseInfo)

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 61 of 74

8.4 RedWebServiceVersion

Synopsis

string RedWebServiceVersion()

Description

This method simply returns the version of MIDA and has no parameters and error codes.
The version is in the format:

<Major Version>.<Minor Version>

Currently, the version is 7.1.

Example

.

.
Dim Version As String
Version = ws.RedWebServiceVersion()
.
.

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 62 of 74

Appendix A: Error Codes

The return codes returned by the various methods signify success or failure of the
corresponding access. The following table lists all the error codes and their descriptions
(meanings, possible causes, etc.).

Error
Code

Description

0 Success, no error
1 Feature not available.

The requested service does not implement such feature,
usually due to unsupported content type or incompatible
content types and source types in sending binary SMS
messages.

2 Service temporarily not available. Please try later.

This code is superceded by code 16.
3 Too many previous invalid login attempts due to invalid

passwords or serial numbers have been detected.

For security reason, the account will be blocked for
approximately 1 hour. The account will be unblocked again
after this period and user can retry again.

4 Invalid password (SMS Key).

For redcoal Communicator or EmailSMS user, the serial
number may have expired and the user needs to re-login.

5 No more credits left.

Please go to http://www.redcoal.com/purchase/ to purchase
more credits.

6 Not enough credits left to complete service.

Please go to http://www.redcoal.com/purchase/ to purchase
more credits.

8 One or more invalid destinations (including empty destination)
detected in the parameter strInRecipients of the various
‘Send…’ methods.

10 Invalid serial number. Please contact us.

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 63 of 74

12 Daily quota reached.

To stop users from sending too many messages, e.g.
spamming, a certain daily quota limit is set on each account. If
this quota is reached, no more messages can be sent (within
this day).

This quota is by default set to a high enough limit for average
users and will be reset each day. The daily quota can also be
set to an agreed limit for those customers that need large
volume of messaging.

13 Destination not in restricted list.

To prevent users from sending messages to unwanted
destination, a list of valid destinations can be set up on an
account basis. Messages sent to any destination not in this list
are forbidden.

14 Invalid binary content format.

When sending binary SMS messages using SendBinarySMS,
certain contents expect certain source types, e.g. operator
logo requires bitmap content, mono ring tone requires RTTTL
format, etc. If the received binary content is not recognizable
for a particular content type, then this error code will be
returned.

This error will also be returned if an invalid Base64-encoded
string is received in the parameter strInBase64Content of
AddBase64MMSContent.

15 Binary SM or MM too big.

A maximum of 4 concatenated messages can be sent. Any
contents require more than 4 messages will incur this error
code.

16 General fault.

Internal or gateway problems, e.g. no Internet connection,
can't connect to gateway, can't get past the proxy firewall, etc.

18 Invalid license.

The trial license has expired. Please go to
http://www.redcoal.com/purchase/ to purchase license for
continual access.

21 Invalid reply email address in the parameter strInReplyEmail
of the various ‘Send…’ methods.

31 Empty group name in the call to CreateGroup. Group will not
be created.

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 64 of 74

32 Empty list of members in the call to CreateGroup. Group will
not be created.

41 Transaction ID already exists.

When creating MMS message using CreateMMS, a unique
transaction ID, which can be user-supplied, is needed to
identify it. If this ID is already used to identify another MMS
message, it cannot be reused again and this error code will be
returned.

42 Invalid transaction ID.

When adding content parts to previously created MMS
message using AddMMSContent or
AddBase64MMSContent, or sending MMS message using
SendMMS, the transaction ID is used to identify the MMS
message previously created by CreateMMS. If this transaction
ID cannot be found to match existing created MMS message,
this error code will be returned.

43 Invalid content type.

When adding content parts to previously created MMS
message using AddMMSContent or
AddBase64MMSContent, only certain content types are
supported. Those content types that are not supported will
incur this error code.

44 Empty MMS message content when calling SendMMS.

No content part has been previously added to this MMS
message using AddMMSContent or
AddBase64MMSContent. At least one content part must be
present and added before sending.

70 Invalid UTC format in the parameter
strInScheduledUTCDateTime of the method SendSMS2.

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 65 of 74

Appendix B: Binary SM Content Types

The following table lists all supported binary SM content types and their descriptions. The
table is in numeric order of the code. The codes for these content types are passed as the
parameter iInType of the method SendBinarySMS, the parameter iInContentType of
the method SendBinarySMSByContent, and in the parameter iInOptions of the method
SendSMS2.

Content Type Code Description
Remove logo 255 This is used to send a special SM that

will restore the original operator logo
on the destination handset and the
current one will effectively be
removed. The SM only applies to
Nokia’s handsets.

EMS message 256 This content type requires the content
source to be encoded in hex (see
appendix C) and contains the EMS
message. The EMS message can
contain ring tones and simple
animated text with sounds for EMS-
enabled handsets by a variety of
manufacturers, e.g. Ericsson. The
EMS message can only be sent using
SendBinarySMSByContent.

Motorola ring tone 848 This content type requires a Motorola
proprietary ring tone. Motorola ring
tone is actually a specially formatted
text message that can be recognized
by the Motorola’s handsets as a ring
tone. It contains a header part that
begins with the string “L35” and the
actual ring tone part. Since these ring
tones are just texts, they are sent as
text SMS messages and hence can
be at most 160 characters long.
Motorola ring tones longer than 160
characters are not supported.

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 66 of 74

Java Game 2960 This content type requires a java
archive that contains the code for the
java game. The java archive file
(usually with file extension “jar”) must
be used and the destination handsets
must support java. In addition, since
the java archive is downloaded to the
handset using WAP, the handsets
must also support WAP.

Mono Ring Tones 5505 This content type requires a mono ring
tone. The ring tone file must be in
RTTTL format (usually with file
extension “rtttl”). The MIDA
installation package provides some
sample mono ring tone files. This
content only applies to Nokia’s
handsets. For sending mono ring
tones to other handsets, see
SendBinarySMSByContent.

Operator logo 5506 This content type requires an operator
logo. The operator logo file is a 72x14
black and white bitmap file (usually
with file extension “bmp”). When
dispatching operator logos the 5 digits
network operator code for destination
network must be specified. Check out
appendix D for valid network operator
codes. The MIDA installation package
provides some sample operator logo
files. This content only applies to
Nokia’s handsets.

Picture Message 5514 This content type requires a picture +
(optional) text. The picture file is a
72x28 black and white bitmap file
(usually with file extension “bmp”) and
can be accompanied by up to 120
characters of text. The MIDA
installation package provides some
sample picture files. This content only
applies to Nokia’s handsets.

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 67 of 74

WAP Bookmark 9039 This content type requires text that
indicates some URL that can be
reached using the WAP protocol from
the destination handsets. For this
reason, the handsets must support
WAP. The maximum number of
characters of the URL is 255 and the
maximum number of characters of the
name of the bookmark is 50. This
content only applies to Nokia’s
handsets. For other handsets, the
special WAP-push message called
Service Indication should be used
(see SendWAPSI).

VCard 9204 This content type requires a VCard.
The VCard file must have the
standard Microsoft VCard format
(usually with file extension “vcf”, but is
actually a plain-text file in certain
format). The MIDA installation
package provides some sample
VCard files. This content only applies
to Nokia’s handsets.

Polyphonic Ring Tones 9601 This content type requires a
polyphonic ring tone. The ring tone file
must be in MIDI format (usually with
file extension “mid” or “midi”). It
depends on the capability of the
destination handsets of playing
polyphonic sounds. The number of
tracks stored in the MIDI file that can
be played on the destination handset
simultaneously also depends on the
capability of the handsets. Check the
manuals of the different makes and
models of the handsets; most
handsets can play a minimal of 4
tracks simultaneously. In addition,
since the polyphonic ring tone is
downloaded to the handsets using
WAP, the handsets must also support
WAP. The MIDA installation package
provides some sample polyphonic ring
tone files.

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 68 of 74

Appendix C: Binary SM Source Types

The method SendBinarySMSByContent accepts contents encoded in different source
types, which compensates the fixed source types accepted by the method
SendBinarySMS and allows more content types to be sent to a larger variety of
handsets. These source types must be compatible with the intended content types.

The following table lists all supported source types, their codes, the compatible content
type codes (see appendix B) and their descriptions. The table is in numeric order of the
source codes. These source codes are passed as the parameter iInSourceType of the
method SendBinarySMSByContent, or in the parameter iInOptions of the method
SendSMS2.

Source
Type

Code Compatible
Content Types

Description

NA 0 All This source type does not specify
any specific type and hence is not
applicable (NA). When this is the
case, SendBinarySMSByContent
behaves just like SendBinarySMS;
that is, the format of the input binary
byte stream must conform to the
corresponding format of the
intended content accepted by
SendBinarySMS (see appendix B).

Hex 1 All except:
848
2960
9601

This source type specifies a HEX
encoded stream of the intended
content. It is basically a plain text
but the content is a stream of hex
encoded strings, each two
characters “XX” where X = 0..9,A..F,
encode a binary byte. With this type,
the users must encode the content
appropriately themselves.

Plain text 2 848
9039
9204

This source type specifies plain text.
The maximum number of characters
must conform to the requirement of
the intended content (see appendix
B).

Bitmap 11 5506
5514

This source type specifies bitmaps.
The format and size of the bitmaps
must conform to the requirement of
the intended content (see appendix
B).

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 69 of 74

OTA 12 5506
5514

This source type specifies over-the-
air (OTA) pictures.

RTTTL 21 5505 This source type specifies ring
tones in RTTTL format.

MIDI 22 9601 This source type specifies
polyphonic ring tones in MIDI
format.

Java
archive

23 2960 This source type specifies java
archives that contain the codes for
the java games.

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 70 of 74

Appendix D: Country and Network Operator Codes

Mobile Country Code (MCC) must be encoded as a 3-character string and Mobile
Network Code (MNC) must be encoded as a 2-character string. The two codes must be
separated by a single white space in between. For instance, the Australia Telstra code
will be “505 01”. This code is passed, as the parameter strInExtraParam of the method
SendBinarySMS, SendBinarySMSByContent or SendMobileContent, or the
parameter strInContent2 of the method SendSMS2, when sending operator logo.

The following table lists the codes for all supported countries and network operators. The
table is in alphabetical order of the countries. An up-to-date list can be found at
http://www.redcoal.com/.

Country and Network Operator Name Country and Network Operator Code
Albania Albanian Mobile Comms 276 01
Algeria Albanian Mobile Comms 603 01
Andorra S.T.A. MobilAnd 213 03
Armenia ArmenTel 283 01
Australia Telstra Mobile Comms 505 01
Australia Cable + Wireless Optus 505 02
Australia Vodafone 505 03
Austria MobilKom Austria A1 232 01
Austria max.mobil.Telekoms Service 232 03
Austria Connect Austria One 232 05
Azerbaijan Azercell Telekom B.M. 400 01
Azerbaijan J.V.Bakcell GSM 2000 400 02
Bahrain Batelco 426 01
Bangladesh Grameen Phone 470 01
Bangladesh Sheba Telecom 470 19
Belgium Belgacom Mobile Proximus 206 01
Belgium KPN Orange 206 20
Belgium Mobistar 206 10
Bosnia Herzegovina Cronet 218 01
Bosnia Herzegovina PTT Bosnia 218 19
Bosnia Herzegovina PE PTT BIH 218 90
Botswana Mascom Wireless 652 01
Brunei Darussalam Jabatan Telekom 528 01
Brunei Darussalam DST Communications 528 11
Bulgaria MobilTel AD 284 01
Cambodia CamGSM 456 01
Cambodia Cambodia Samart Comms 456 02
Cameroon PTT Cameroon Cellnet 624 01
Canada Microcell Connexions Inc 302 37
Cape Verde Cabo Verde Telecom 625 01
Chile Entel Telefonia Movil 730 01
Chile Entel PCS Telecom. 730 10
China China Telecom GSM 460 00
China China Unicom GSM 460 01
China Liaoning PPTA 460 02
Cote d'Ivoire Comstar Cellular Network 612 01
Cote d'Ivoire Telecel 612 02
Cote d'Ivoire S.I.M Ivoiris 612 03
Cote d'Ivoire Loteny Telecom Telecel 612 05
Croatia Croatian Telecoms Cronet 219 01
Croatia Vipnet 219 10
Cyprus Cyprus Telecoms Authority 280 01
Czech Republic RadioMobil 230 01
Czech Republic EuroTel Praha 230 02

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 71 of 74

Czech Republic SPT Telecom 230 03
Denmark Tele-Danmark Mobil 238 01
Denmark Sonofon 238 02
Denmark Telia Denmark 238 20
Denmark Mobilix 238 30
Egypt MobiNil 602 01
Egypt Misrfone Telecom. Click 602 02
Estonia Estonian Mobile Telephone 248 01
Estonia Radiolinja Eesti 248 02
Estonia Q GSM 248 03
Ethiopia Ethiopian Telecoms Auth. 636 01
Fiji Vodafone Fiji 542 01
Finland Telia Finland 244 03
Finland Radiolinja 244 05
Finland Alands Mobiltelefon 244 05
Finland Finnet Group 244 09
Finland Sonera Corporation 244 91
France France Telecom Itineris 208 01
France SFR 208 10
France Bouygues Telecom 208 20
French Polynesia Tikiphone 547 20
French West Indies France Caraibe Ameris 340 01
Georgia Geocell Limited 282 01
Georgia Magti GSM 282 02
Germany D1 DeTe Mobil 262 01
Germany D2 Mannesmann Mobilfunk 262 02
Germany E-Plus Mobilfunk 262 03
Germany Viag Interkom 262 07
Ghana ScanCom 620 01
Gibraltar Gibraltar Telecoms Gibtel 266 01
Greece Cosmote 202 01
Greece Panafon 202 05
Greece Telestet 202 10
Greenland Tele Greenland 290 01
Guinea Sotelgui Lagui 611 02
Hong Kong Hong Kong Telecom CSL 454 00
Hong Kong Hutchison Telecom 454 04
Hong Kong SmarTone Mobile Comms 454 06
Hong Kong New World PCS 454 10
Hong Kong Peoples Telephone 454 12
Hong Kong Mandarin Com. Sunday 454 16
Hong Kong Pacific Link 454 18
Hong Kong P Plus Comm 454 22
Hungary Pannon GSM 216 01
Hungary Westel 900 GSM Mobile 216 30
Iceland Iceland Telecom Siminn 274 01
Iceland TAL hf 274 02
India TATA Cellular 404 07
India Bharti Cellular Telecom Airtel 404 10
India Sterling Cellular Essar 404 11
India Escotel Mobile Comms 404 12
India Modi Telstra Modicom 404 14
India Aircel Digilink Essar Cellph. 404 15
India Hutchison Max Touch 404 20
India BPL Mobile 404 21
India BPL USWest Cellular 404 27
India Usha Martin Tel. Command 404 30
India Mobilenet 404 31
India SkyCell Communications 404 40
India RPG MAA 404 41
India Srinivas Cellcom 404 42
Indonesia PT. Satelindo 510 01
Indonesia Telkomsel 510 10
Indonesia PT. Excelcomindo Excelcom 510 11
Iran TCI 432 11
Iraq Iraq Telecom 418 01
Ireland Eircell 272 01

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 72 of 74

Ireland Esat Digifone 272 02
Ireland Meteor 272 03
Israel Partner Communications 425 01
Italy Telecom Italia Mobile TIM 222 01
Italy Omnitel Pronto 222 10
Italy Wind Telecomunicazioni 222 88
Jordan J.M.T.S Fastlink 416 01
Kuwait Mobile Telecoms MTCNet 419 02
Kyrgyz Republic Bitel 437 01
Lao Lao Shinawatra Telecom 457 01
Latvia Latvian Mobile Tel. 247 01
Latvia BALTCOM GSM 247 02
Lebanon FTML Cellis 415 01
Lebanon LibanCell 415 03
Lesotho Vodacom 651 01
Liberia Omega Communications 618 01
Lithuania Omnitel 246 01
Lithuania UAB Bite GSM 246 02
Luxembourg P+T LUXGSM 270 01
Luxembourg Millicom Tango GSM 270 77
Macau C.T.M. TELEMOVEL+ 455 01
Macedonia Macedonian Tel. MobiMak 294 01
Madagascar Madacom 646 01
Madagascar SMM Antaris 646 02
Madagascar Sacel 646 03
Malawi Telekom Network Callpoint 650 01
Malaysia My BSB 502 02
Malaysia Binariang 502 03
Malaysia Binariang Comms. Maxis 502 12
Malaysia Telekom Cellular TM Touch 502 13
Malaysia DiGi Telecommunications 502 16
Malaysia Time Wireless Adam 502 17
Malaysia Celcom 502 19
Malta Vodafone 278 01
Mauritius Cellplus Mobile Comms 617 01
Moldova Voxtel 259 01
Morocco Itissalat Al-Maghrib IAM 604 01
Mozambique Telecom de Mocambique 634 01
Namibia MTC 649 01
Netherlands Libertel 204 04
Netherlands KPN Telecom 204 08
Netherlands Telfort 204 12
Netherlands Ben 204 16
Netherlands Dutchtone 204 20
New Caledonia OPT Mobilis 546 01
New Zealand Vodafone 530 01
New Zealand Telecom NZ 530 03
New Zealand Telstra 530 04
Norway Telenor Mobil 242 01
Norway NetCom GSM 242 02
Oman General Telecoms 422 02
Pakistan Mobilink 410 01
Papua New Guinea Pacific Mobile Comms 310 01
Philippines Isla Comms 515 01
Philippines Globe Telecom 515 02
Philippines Smart Communications 515 03
Poland Polkomtel PLUS GSM 260 01
Poland ERA GSM 260 02
Poland IDEA Centertel 260 03
Portugal Telecel Communicacoes 268 01
Portugal Optimus Telecom. 268 03
Portugal Telecom Moveis Nac. TMN 268 06
Qatar Q-Tel QATARNET 427 01
Reunion Societe Reunionnaise SRR 647 10
Romania MobiFon CONNEX GSM 226 01
Romania Mobil Rom DIALOG 226 10
Russia MTS Moscow 250 01

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 73 of 74

Russia North-West GSM 250 02
Russia Siberian Cellular 250 05
Russia Zao Smarts 250 07
Russia Don Telecom 250 10
Russia New Telephone Company 250 12
Russia Far-Eastern Cellular 250 12
Russia Kuban GSM 250 13
Russia Uratel 250 39
Russia North Caucasian GSM 250 44
Russia KB Impuls BeeLine 250 99
Rwanda Rwandacell 635 10
Saudi Arabia Ministry of PTT Al Jawal 420 01
Saudi Arabia Electronics App' Est. EAE 420 07
Senegal Sonatel ALIZE 608 01
Seychelles Seychelles Cellular Services 633 01
Seychelles Telecom AIRTEL 633 10
Singapore Singapore Tel. GSM 900 525 01
Singapore Singapore Tel. GSM 1800 525 02
Singapore MobileOne Asia 525 03
Slovak Republic Globtel GSM 231 01
Slovak Republic EuroTel GSM 231 02
Slovenia Si.mobil 293 40
Slovenia Mobitel 293 41
South Africa Vodacom 655 01
South Africa MTN 655 10
Spain Airtel Movil 214 01
Spain Retevision Movil 214 03
Spain Telefonica Moviles Movistar 214 07
Sri Lanka MTN Networks Dialog GSM 413 02
Sudan Mobile Telephone Company 634 01
Sweden Telia Mobitel 240 01
Sweden Comviq GSM 240 07
Sweden Europolitan 240 08
Switzerland Swisscom NATEL 228 01
Switzerland diAx Mobile 228 02
Switzerland Orange 228 03
Syria Syrian Telecom Est. MOBILE 417 09
Taiwan Far EasTone Telecoms 466 01
Taiwan TUNTEX Telecom 466 06
Taiwan KG Telecom 466 88
Taiwan Chunghwa Telecom 466 92
Taiwan Mobitai Communications 466 93
Taiwan Pacific Cellular TWNGSM 466 97
Taiwan TransAsia Telecoms 466 99
Tanzania Tritel 640 01
Thailand Advanced Info Service AIS 520 01
Thailand WCS IQ 520 10
Thailand Total Access Worldphone 520 18
Thailand Digital Phone HELLO 520 23
Togo Togo Telecom TOGO CELL 615 01
Tunisia Tunisie Telecom Tunicell 605 02
Turkey Turk Telekom Turkcell 286 01
Turkey TELSIM Mobil Telekom. 286 02
U.S.A. APC Sprint Spectrum 310 02
U.S.A. Wireless 2000 Telephone 310 11
U.S.A. BellSouth Mobility DCS 310 15
U.S.A. Omnipoint Communications 310 16
U.S.A. Pacific Bell Wireless 310 17
U.S.A. Western Wireless Voicestream 310 26
U.S.A. Powertel 310 27
U.S.A. Aerial Communications 310 31
U.S.A. Iowa Wireless Services 310 77
Uganda Celtel Cellular 641 01
Uganda MTN Uganda 641 10
Ukraine Ukrainian Mobile Comms 255 01
Ukraine Ukrainian Radio Systems 255 02
Ukraine Kyivstar GSM 255 03

MIDA 7.11 COPYRIGHT  1999-2005 REDCOAL PTY LTD 74 of 74

Ukraine Golden Telecom 255 05
United Arab Emirates UAE ETISALAT-G1 424 01
United Arab Emirates UAE ETISALAT-G2 424 02
United Kingdom Cellnet 234 10
United Kingdom Vodafone 234 15
United Kingdom One 2 One 234 30
United Kingdom Orange 234 33
United Kingdom Jersey Telecom GSM 234 50
United Kingdom Guernsey Telecoms GSM 234 55
United Kingdom Manx Telecom Pronto GSM 234 58
Uzbekistan Buztel 434 01
Uzbekistan Daewoo Unitel 434 04
Uzbekistan Coscom 434 05
Venezuela Infonet 734 01
Vietnam MTSC 452 01
Vietnam DGPT 452 02
Yugoslavia MOBTEL 220 01
Yugoslavia ProMonte GSM 220 02
Zambia Zamcell 645 01
Zimbabwe NET*ONE 648 01
Zimbabwe Telecel 648 03

– End of Document –

